Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

(Z)-4-(2,6-Dichlorophenyldiazenyl)-6-\{[1,3-dihydroxy-2-(hydroxy-methyl)propan-2-ylamino]methylene\}-2-methoxycyclohexa-2,4-dienone and the 3-methoxyphenyldiazenyl and 4-methoxyphenyldiazenyl analogues

Arzu Özek, ${ }^{\text {a* }}$ Ciğdem Albayrak, ${ }^{\text {b }}$ Mustafa Odabaşoğlu ${ }^{\text {b }}$ and Orhan Büyükgüngör ${ }^{a}$

${ }^{\text {a }}$ Department of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey Correspondence e-mail: arzuozek@omu.edu.tr

Received 23 December 2005
Accepted 10 February 2006
Online 11 March 2006
The title compounds, (Z)-4-(2,6-dichlorophenyldiazenyl)-6-\{[1,3-dihydroxy-2-(hydroxymethyl)propan-2-ylamino]methyl-ene\}-2-methoxycyclohexa-2,4-dienone, $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}$, (I), (Z)-6-\{[1,3-dihydroxy-2-(hydroxymethyl)propan-2-ylamino]-methylene\}-2-methoxy-4-(3-methoxyphenyldiazenyl)cyclo-hexa-2,4-dienone, $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$, (II), and (Z)-6-\{[1,3-di-hydroxy-2-(hydroxymethyl)propan-2-ylamino]methylene\}-2-methoxy-4-(4-methoxyphenyldiazenyl)cyclohexa-2,4-dienone, $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$, (III), all adopt the keto-amine tautomeric form, and the hydroxy H atoms are located on the N atom in all three compounds. Strong intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds arise as a result of the shifts achieved by the hydroxy H atoms of the Schiff bases to the N atoms. Positional disorder was observed in molecules (II) and (III). In all three compounds, $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions affect the packing of the molecules. The compounds exhibit trans geometry with respect to the azo $\mathrm{N}=\mathrm{N}$ double bond, and the molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form three-dimensional networks.

Comment

Azo compounds are the most widely used class of dyes owing to their versatile application in various fields, such as the dyeing of textiles and fibres, the colouring of different materials, and high-technology areas, such as electro-optical devices and ink-jet printers (Peters \& Freeman, 1991). Most Schiff bases have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Williams, 1972). Two characteristic properties of Schiff bases are photochromism and thermochromism (Cohen et al., 1964; Moustakali-Mavridis et al., 1978). These properties are caused by proton transfer from the hydroxy O atom to the imine N atom (Hadjoudis et al., 1987;

Xu et al., 1994). As part of a general study of the crystal chemistry of dyes, and to provide templates for molecularmodelling studies, the crystal structures of the title compounds, (I), (II) and (III), have been determined. The molecular structures of (I), (II) and (III), with the atomlabelling schemes, are shown in Figs. 1, 2 and 3, respectively, and selected bond lengths and angles are given in Tables 1, 3 and 5 , respectively.

(I)

(III)

In all three molecules, the keto-amine tautomer is favoured over the phenol-imine form, as indicated by the $\mathrm{C} 10-\mathrm{O} 3$, $\mathrm{C} 13-\mathrm{N} 3, \mathrm{C} 11-\mathrm{C} 13$ and $\mathrm{C} 10-\mathrm{C} 11$ bond lengths (Figs. 1-3, and Tables 1, 3 and 5). Furthermore, these data show that there are significant elongations of the $\mathrm{C} 13-\mathrm{N} 3$ bonds and contractions of the $\mathrm{C} 10-\mathrm{O} 3$ bonds. A similar effect was observed for 4-[(3-chloropheny)diazenyl]-2-\{[tris(hydroxy-methyl)methyl]aminomethylene\}cyclohexa-3,5-dienone $[\mathrm{C} 10-\mathrm{O} 3=1.286(2) \AA, \mathrm{C} 13-\mathrm{N} 3=1.298$ (3) $\AA, \mathrm{C} 11-\mathrm{C} 13=$ 1.411 (3) \AA and $\mathrm{C} 10-\mathrm{C} 11=1.436$ (3) \AA; Odabaşoğlu et al., 2003]. The H atom in (I)-(III) is located on atom N1, thus confirming a preference for the keto-amine tautomer in the solid state. The $\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{N} 2-\mathrm{C} 7$ bond lengths are approximately the same in (I)-(III), and these lengths indicate single-bond character, whereas the $\mathrm{N}=\mathrm{N}$ bond lengths are indicative of significant double-bond character. The high s.u. values and high displacement parameters of some atoms in the molecules of both (II) and (III) are probably caused by positional and orientational disorder. In (II), atom C18 is disordered over two positions, with occupancy factors of 0.64 (7) and 0.36 (7). In (III), atom O1 shows positional disorder with occupancy factors of 0.409 (7) and 0.591 (7). At

organic compounds

the same time, the benzene rings also show orientational disorder with the same occupancy factors (Fig. 3).

In (I), the $\mathrm{C}-\mathrm{Cl}$ bond distance is consistent with that in 5-(2-chlorophenyldiazenyl)salicylaldehyde and 4-(2-chloro-phenyldiazenyl)-2-\{[tris(hydroxymethyl)methyl]aminomethyl-ene\}cyclohexa-3,5-dienone (Albayrak et al., 2004). The dihedral angles between the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 7-\mathrm{C} 12$ rings are 58.91 (13), 8.89 (11) and 21.57 (3) (the average of the two angles for the orientationally disordered benzene ring) for (I), (II) and (III), respectively.

An ORTEP-3 (Farrugia, 1997) view of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.

Figure 2
An ORTEP-3 (Farrugia, 1997) view of (II), showing the atom-numbering scheme and 50% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.

Figure 3
An ORTEP-3 (Farrugia, 1997) view of (III), showing the atomnumbering scheme and 50% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.

The intra- and intermolecular hydrogen bonds are shown in the packing diagrams of (I), (II) and (III) in Figs. 4-6, respectively. In all three structures, these $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate edge-fused $R_{2}^{2}(5), R_{3}^{2}(19)$ and $R_{2}^{2}(12)$ rings. Atom H33 bonded to atom N3 forms a strong intramolecular hydrogen bond with atom O3, as observed in similar

Figure 4

An ORTEP-3 (Farrugia, 1997) packing diagram of (I). Dashed lines indicate hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions. H atoms not involved in hydrogen bonding or $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions have been omitted for clarity.

Figure 5

An ORTEP-3 (Farrugia, 1997) packing diagram of (II). Dashed lines indicate hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions. H atoms not involved in hydrogen bonding or $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions have been omitted for clarity.
compounds (Odabaşoğlu et al., 2003; Albayrak et al., 2004). In (I)-(III), the molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Tables 2, 4 and 6, and Figs. 4-6). In addition to these interactions, all three compounds contain $\pi-\pi$ interactions (Table 7 and Figs. 4-6).

An ORTEP-3 (Farrugia, 1997) packing diagram of (III). Dashed lines indicate hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions. H atoms not involved in hydrogen bonding or $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions have been omitted for clarity.

Experimental

Compounds (I), (II) and (III) were prepared as described in the literature (Odabaşoğlu et al., 2003) using o-vanillin, 2,6-dichloroaniline for (I), 3-methoxyaniline for (II), 4-methoxyaniline for (III) and tris(hydroxymethyl)aminomethane as starting materials. The products were crystallized from ethanol, and well shaped crystals were obtained by slow evaporation of ethanol solutions [yield 74% and m.p. $480-482 \mathrm{~K}$ for (I); yield 76% and m.p. $462-463 \mathrm{~K}$ for (II); yield 78% and m.p. 489-490 K for (III)].

Compound (I)

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}$

$M_{r}=428.26$
Monoclinic, $P 2_{1} / c$
$a=16.8445$ (15) \AA
$b=10.7259$ (5) \AA
$c=11.1126$ (9) \AA
$\beta=106.037$ (7) ${ }^{\circ}$
$V=1929.6(2) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.871, T_{\text {max }}=0.977$ 10068 measured reflections 3782 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.132$
$S=1.01$
3782 reflections
269 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0754 P)^{2}\right. \\
& +0.1273 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.31 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.36 \text { e } \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (I).

$\mathrm{C} 1-\mathrm{N} 11$	$1.443(3)$	$\mathrm{C} 10-\mathrm{O} 3$	$1.279(3)$
$\mathrm{C} 2-\mathrm{Cl} 1$	$1.727(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.434(3)$
$\mathrm{C} 6-\mathrm{C} 2$	$1.732(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.406(3)$
$\mathrm{C} 7-\mathrm{C} 12$	$1.372(3)$	$\mathrm{C} 11-\mathrm{C} 13$	$1.425(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.409(3)$	$\mathrm{C} 13-\mathrm{N} 3$	$1.284(3)$
$\mathrm{C} 7-\mathrm{N} 2$	$1.417(3)$	$\mathrm{C} 14-\mathrm{N} 3$	$1.464(3)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.364(3)$	$\mathrm{C} 18-\mathrm{O} 1$	$1.417(3)$
C $9-\mathrm{O} 1$	$1.357(3)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.243(3)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.434(3)$		
			$123.37(19)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$120.0(2)$	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 11$	$122.2(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$122.2(2)$	$\mathrm{N} 3-\mathrm{C} 13-\mathrm{C} 11$	$107.13(18)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 2$	$113.35(19)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 17$	$129.6(2)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$	$126.3(2)$	$\mathrm{C} 13-\mathrm{N} 3-\mathrm{C} 14$	
			$179.2(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 13-\mathrm{N} 3$	$0.3(3)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 7$	

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$) for (I).
$C g 1$ is the centroid of the $\mathrm{C} 7-\mathrm{C} 12$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H33 . O 3	0.79 (3)	1.90 (3)	2.587 (2)	144 (3)
$\mathrm{O} 4-\mathrm{H} 44 \cdots \mathrm{O}^{\text {i }}$	0.74 (3)	2.04 (3)	2.777 (3)	174 (3)
$\mathrm{O} 5-\mathrm{H} 55 \cdots \mathrm{O} 4^{\text {ii }}$	0.80 (4)	1.94 (4)	2.740 (3)	176 (3)
O6-H66 \cdots O $1^{\text {iii }}$	0.70 (3)	2.25 (3)	2.802 (2)	137 (3)
O6-H66 \cdots O3 $3^{\text {iii }}$	0.70 (3)	2.28 (3)	2.923 (2)	153 (3)
$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A} \cdots \mathrm{Cg} 1^{\text {iv }}$	0.97 (1)	2.95 (1)	3.798 (2)	147 (1)

Symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+2,-y,-z+2$; (iii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.

Compound (II)

Crystal data

$D_{x}=1.474 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation

Cell parameters from 12750 reflections
$\theta=1.9-28.4^{\circ}$
$\mu=0.37 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Stick, red
$0.78 \times 0.33 \times 0.05 \mathrm{~mm}$
$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$
$M_{r}=389.40$
Monoclinic, $P 2_{1} / c$
$a=16.3722$ (11) £
$b=10.4506$ (5) \AA
$c=11.3239$ (7) A
$\beta=99.180(5)^{\circ}$
$V=1912.7(2) \AA^{3}$
$Z=4$
$Z=4$
$D_{x}=1.352 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

2715 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-20 \rightarrow 20$
$k=-11 \rightarrow 13$
$l=-13 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.160$
$S=1.06$
3744 reflections
280 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0982 P)^{2}\right. \\
& \quad+0.2314 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.83 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Table 3
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$) for (II).

C1-N1			
C3-O1	$1.420(3)$	C10-O3	$1.284(2)$
C7-C12	$1.399(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.426(3)$
C7-C8	$1.371(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.410(3)$
C7-N2	$1.413(3)$	$\mathrm{C} 11-\mathrm{C} 13$	$1.417(3)$
C8-C9	$1.418(3)$	$\mathrm{C} 13-\mathrm{N} 3$	$1.291(2)$
C9-O2	$1.349(3)$	$\mathrm{C} 14-\mathrm{N} 3$	$1.463(2)$
C9-C10	$1.362(2)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.256(2)$
C6-C1-N1	$1.443(3)$		
C2-C1-N1	$125.8(2)$	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 11$	$123.48(16)$
C2-C3-O1	$113.2(2)$	$\mathrm{N} 3-\mathrm{C} 13-\mathrm{C} 11$	$121.94(17)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 2$	$115.2(3)$	$\mathrm{C} 17-\mathrm{C} 14-\mathrm{C} 15$	$107.33(15)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 2$	$122.92(18)$	$\mathrm{C} 13-\mathrm{N} 3-\mathrm{C} 14$	$130.15(16)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 13-\mathrm{N} 3$	$126.24(18)$		
	$-1.1(3)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 7$	$179.06(17)$

Table 4
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).
$C g 1$ is the centroid of the $\mathrm{C} 7-\mathrm{C} 12$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H33 . ${ }^{\text {O }} 3$	0.86 (2)	1.84 (2)	2.584 (2)	144 (2)
$\mathrm{O} 4-\mathrm{H} 44 \cdots \mathrm{O}^{\text {v }}$	0.824 (17)	1.921 (18)	2.744 (2)	177 (3)
$\mathrm{O} 5-\mathrm{H} 55 \cdots \mathrm{O} 4^{\text {vi }}$	0.836 (17)	1.901 (18)	2.734 (2)	174 (3)
$\mathrm{O} 6-\mathrm{H} 66 \cdots \mathrm{O} 3^{\text {vii }}$	0.815 (17)	1.999 (19)	2.7792 (19)	160 (3)
O6-H66 \cdots O $2^{\text {vii }}$	0.815 (17)	2.26 (3)	2.800 (2)	124 (2)
C15-H15B \cdots Cg1 $1^{\text {viii }}$	0.93 (1)	3.05)	3.861 (2)	142 (1)

Symmetry codes: (v) $-x+2, y-\frac{1}{2},-z+\frac{3}{2}$; (vi) $-x+2,-y+2,-z+2$; (vii) $x,-y+\frac{3}{2}$, $z-\frac{1}{2}$; (viii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.

Compound (III)

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$
$M_{r}=389.40$
Monoclinic, $P 2_{1} / c$
$a=16.9333$ (9) А \AA
$b=10.7124$ (6) \AA
$c=10.5476$ (6) A
$\beta=98.966$ (4) ${ }^{\circ}$
$V=1889.92(18) \AA^{3}$
$Z=4$
$D_{x}=1.369 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.973, T_{\text {max }}=0.993$
17746 measured reflections
3714 independent reflections

Mo $K \alpha$ radiation
Cell parameters from 17273 reflections
$\theta=1.9-28.8^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Plate, red
$0.35 \times 0.23 \times 0.09 \mathrm{~mm}$

0176
2438 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.116$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-20 \rightarrow 20$
$k=-13 \rightarrow 13$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.135$
$S=0.99$
3714 reflections
311 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0684 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.23 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.009 (2)

Table 5
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$) for (III).

$\mathrm{C} 1-\mathrm{N} 1$	$1.428(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.435(3)$
$\mathrm{C} 7-\mathrm{C} 12$	$1.363(3)$	$\mathrm{C} 11-\mathrm{C} 13$	$1.408(3)$
$\mathrm{C} 7-\mathrm{N} 2$	$1.412(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.416(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.422(3)$	$\mathrm{C} 13-\mathrm{N} 3$	$1.295(3)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.356(3)$	$\mathrm{C} 14-\mathrm{N} 3$	$1.469(2)$
$\mathrm{C} 9-\mathrm{O} 2$	$1.367(2)$	$\mathrm{C} 19-\mathrm{O} 2$	$1.417(3)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.439(3)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.253(3)$
$\mathrm{C} 10-\mathrm{O} 3$	$1.271(2)$		
			$122.26(18)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{N} 2$	$115.33(19)$	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 11$	$123.31(18)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8$	$119.8(2)$	$\mathrm{N} 3-\mathrm{C} 13-\mathrm{C} 11$	$107.03(18)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$124.8(2)$	$\mathrm{C} 17-\mathrm{C} 14-\mathrm{C} 15$	$128.58(16)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 2$	$125.7(2)$	$\mathrm{C} 13-\mathrm{N} 3-\mathrm{C} 14$	
			$176.4(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 13-\mathrm{N} 3$	$0.2(3)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 7$	

Table 6
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$) for (III).
$C g 1$ is the centroid of the $\mathrm{C} 7-\mathrm{C} 12$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H33 . O 3	0.92 (3)	1.84 (3)	2.619 (2)	141 (2)
$\mathrm{O} 5-\mathrm{H} 55 \cdots \mathrm{O} 4^{\text {ix }}$	0.815 (19)	1.92 (2)	2.733 (2)	174 (4)
$\mathrm{O} 4-\mathrm{H} 44 \cdots \mathrm{O} 6^{\text {viii }}$	0.837 (18)	1.98 (2)	2.789 (2)	163 (3)
O6-H66 \cdots O3 ${ }^{\text {x }}$	0.850 (17)	1.924 (19)	2.7125 (18)	154 (2)
O6-H66 $\cdots{ }^{\text {O }} 2^{\text {x }}$	0.850 (17)	2.45 (2)	3.081 (2)	132 (2)
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cg} 1^{\mathrm{xi}}$	0.93 (1)	3.32 (1)	3.463 (7)	91 (1)

Symmetry codes: (viii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (ix) $-x,-y+2,-z$; (x) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (xi) $-x+1,-y+1,-z+1$.

Table 7
Observed $\pi-\pi$ interaction distances (\AA) for (I), (II) and (III).
$C g 1$ and $C g 2$ are the centroids of the C1-C6 and C7-C12 rings, respectively.

Compound	$C g \cdots C g$	$d_{\text {centroids }}$	$d_{\text {perpendicular }}$
(I)	$C g 1 \cdots C g 1^{\text {xii }}$	$3.556(2)$	3.38
(II)	$C g 1 \cdots C 2^{\text {xi }}$	$3.937(1)$	3.57
(III)	$C g 1 \cdots C 2^{\text {xi }}$	$3.996(3)$	3.66

Symmetry codes: (xi) $-x+1,-y+1,-z+1$; (xii) $-x+1,-y+1,-z+2$.

H atoms attached to N and O atoms were refined freely. All remaining H atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.97 \AA$. In (III), the H atoms of C 18 were refined at two different positions owing to disorder, with 0.5 occupancy for each component. The $U_{\text {iso }}(\mathrm{H})$ values are $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for the remaining C -bound H atoms.

For all compounds, data collection: $X-A R E A$ (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick,
1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ1088). Services for accessing these data are described at the back of the journal.

References

Albayrak, Ç., Odabaşoğlu, M., Büyükgüngör, O. \& Lönnecke, P. (2004). Acta Cryst. C60, o318-o320.
Cohen, M. D., Schmidt, G. M. J. \& Flavian, J. (1964). J. Chem. Soc. pp. 20412051.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hadjoudis, E., Vitterakis, M. \& Mavridis, I. M. (1987). Tetrahedron, 43, 13451360.

Moustakali-Mavridis, I., Hadjoudis, E. \& Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.
Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. \& Goesmann, H. (2003). Acta Cryst. C59, o234-o236.
Peters, A. T. \& Freeman, H. S. (1991). Colour Chemistry, pp. 193-223. London: Elsevier Science Publishers Ltd.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Williams, D. R. (1972). Chem. Rev. 72, 203-213.
Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. \& Liu, H.-X. (1994). Acta Cryst. C50, 1169-1171.

